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Abstract: A light field parameterized on the surface offers a nat-
ural and intuitive description of the view-dependent appearance of
scenes with complex reflectance properties. To enable the use of
surface light fields in real-time rendering we develop a compact
representation suitable for an accelerated graphics pipeline. We
propose to approximate the light field data by partitioning it over
elementary surface primitives and factorizing each part into a small
set of lower-dimensional functions. We show that our representa-
tion can be further compressed using standard image compression
techniques leading to extremely compact data sets that are up to
four orders of magnitude smaller than the input data. Finally, we
develop an image-based rendering method, light field mapping, that
can visualize surface light fields directly from this compact repre-
sentation at interactive frame rates on a personal computer. We also
implement a new method of approximating the light field data that
produces positive only factors allowing for faster rendering using
simpler graphics hardware than earlier methods. We demonstrate
the results for a variety of non-trivial synthetic scenes and physical
objects scanned through 3D photography.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—color, shading, shadowing, texture I.4.8
[Image Processing And Computer Vision]: Scene Analysis—color,
shading I.2.10 [Artificial Intelligence]: Scene Analysis—3D/stereo
scene analysis, texture
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The recent proliferation of inexpensive but powerful graphics hard-
ware and new advances in digital imaging technology are enabling
novel methods for realistic modeling of the appearance of physical
objects. On the one hand, we see a tendency to represent com-
plex analytic reflectance models with their sample-based approxi-
mations that can be evaluated efficiently using new graphics hard-
ware features [15; 16; 17]. On the other hand, we are witnessing
a proliferation of image-based rendering and modeling techniques
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Figure 1: A combination of synthetic and scanned objects rendered
using light field mapping. Complex, physically realistic reflectance
properties of this scene are preserved.

[26; 22; 14; 4] that attempt to represent the discrete radiance data
directly in the sample-based format without resorting to the analytic
models at all. These techniques are popular because they promise a
simple acquisition and an accurate portrayal of the physical world.
The approach presented here combines these two trends. Similar to
other image-based methods, our approach produces a sample-based
representation of the surface light field data. Additionally, the pro-
posed representation can be evaluated efficiently with the support
of existing graphics hardware.

��� �������� 	
 ���� ����� ������� ����	��

A surface light field is a 4-dimensional function f �r�s�θ �φ� that
completely defines the outgoing radiance of every point on the sur-
face of an object in every viewing direction. The first pair of pa-
rameters of this function �r�s� describes the surface location and
the second pair of parameters �θ �φ� describes the viewing direc-
tion. A direct representation and manipulation of surface light field
data is impractical because of the large size. Instead, we propose to
approximate the light field function as a sum of a small number of
products of lower-dimensional functions

f �r�s�θ �φ��
K

∑
k�1

gk�r�s�hk�θ �φ�� (1)

We show that it is possible to construct the approximations of this
form that are both compact and accurate by taking advantage of
the spatial coherence of the surface light fields. We accomplish
this by partitioning the light field data across small surface primi-
tives and building the approximations for each part independently.
The partitioning is done in such a way as to ensure continuous ap-
proximations across the neighboring surface elements. Because the
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functions gk�r�s� and hk�θ �φ� encode the light field data and are
stored in a sampled form as texture maps, we call them the light
field maps. Similarly, we refer to the process of rendering from this
approximation as light field mapping. In the remainder of the paper
we will refer to functions gk�r�s� as the surface maps and functions
hk�θ �φ� as the view maps.

As shown in earlier work, similar types of factorizations can be
used to produce high quality renderings of objects with complex
surface reflectance properties at interactive frame rates [15; 17; 16].
Most previous work, however, assumes that the surface of the ob-
ject has uniform reflectance properties, which greatly simplifies the
problem. Our method shows for the first time how to compute
such factorization for surfaces where each point has a unique re-
flectance property. This generalization makes light field mapping
ideally suited for modeling and rendering of physical objects and
scenes scanned through 3D photography.

��� �	��������	��

We make the following contributions to analysis and representa-
tion of image-based data and to hardware-accelerated rendering of
image-based models.
Data Partitioning: We introduce a novel type of partitioning of the
light field data that ensures a continuous approximation across in-
dividual triangles. It represents the light field data for each triangle
as a linear blend of 3 light fields corresponding to the vertices of
the triangle. See Section 2.1.
Approximation Through Factorization: We introduce a new type
of factorization of light field data. Dense and uniform sampling of
the view-dependent information, enabled through the use of view
maps hk�θ �φ�, ensures correct image synthesis from any camera
location. See Section 2.2.
Positive Factorization: We introduce a new method of approxi-
mating the light field data that uses non-negative matrix factoriza-
tion [20] to produce positive only factors. This method allows for
faster rendering using generic graphics hardware at high approxi-
mation quality. It is significantly easier to implement than homo-
morphic factorization [25]. See Section 2.2.
Hardware-Accelerated Rendering: We develop a fully hardware-
accelerated rendering routine that can visualize the light field data
from the proposed, compact representation at highly interactive
frame rates. The rendering algorithm is extremely simple to imple-
ment, since it reduces to a multi-pass texture mapping operation.
Rendering quality can be improved progressively by increasing the
number of rendering passes. See Section 3.
Compression: We report the highest compression of surface light
fields to date. Since the light field maps are in essence collections
of images that themselves exhibit redundancy, they can be further
compressed using standard image compression techniques. This
compression combined with the redundancy reduction achieved
through the approximation results in extremely high compression
ratios. Our method routinely approaches 4 orders of magnitude
compression ratio and allows for hardware-accelerated rendering
directly from the compressed representation. Additional compres-
sion is possible for transmission and storage purposes. See Sec-
tion 4.

��� ������� �	� 

Traditionally, computer graphics researchers have favored analytic
reflectance models for their intuitive simplicity, compactness and
flexibility [37; 7; 38; 29]. Although simple to represent, these mod-
els are often costly to compute and difficult to develop. Several
approaches have been developed to approximate reflectance func-
tions with a set of predefined basis function [34; 18; 19] but with-
out much consideration for rendering efficiency. Inverse rendering

methods [33; 40; 9; 2] approximate scene attributes, such as light-
ing and surface reflectance, by fitting analytic models to sample-
based radiance data. Ramamoorthi and Hanrahan [31] propose a
signal processing framework for inverse rendering. Light field map-
ping is a related method that uses a factor analysis approach rather
than a signal processing approach.

Image-based methods [26; 22; 14; 4; 24] represent the radiance
data directly in the sample-based format. Compression of light field
data is an important area of research. Levoy and Hanrahan [22]
use VQ [13], Magnor and Girod [23] have developed a series of
disparity-compensated hybrid light field codecs. Chai et al. [5]
use spectral analysis to compute the “minimum sampling rate” for
light field rendering and show that scene depth information signif-
icantly decreases this rate. Miller et al. [27] propose a method of
rendering surface light fields from input images compressed using
JPEG-like compression. Malzbender et al. [24] approximate a se-
quence of images captured under varying lighting conditions using
biquadratic polynomials. The representation is very compact and
can be implemented in hardware.

The work on sample-based approximations for some of the ana-
lytic models listed above includes [15; 17; 21]. Kautz and McCool
[16] propose a method for hardware assisted rendering of arbitrary
BRDFs through their decomposition into a sum of 2D separable
functions that is based on an idea proposed by Fournier [12]. Our
application is fundamentally different from this work, since it al-
lows each surface point to have different reflectance properties and
is therefore ideally suited for modeling and rendering of objects
and scenes scanned through 3D photography. Homomorphic fac-
torization of McCool et al. [25] generates a BRDF factorization
with positive factors only, which are easier and faster to render on
the current graphics hardware, and deals with scattered data with-
out a separate resampling and interpolation algorithm. We present
a novel method for factorization of light field data that also pro-
duces positive only factors using non-negative matrix factorization
[20]. Lensch et al. [21] reconstruct a spatially varying BRDF from
a sparse set of images. First, the object is split into cluster with
different BRDF properties, then a set of basis BRDFs is generated
for each cluster, finally the original samples are reprojected into the
space spanned by the basis BRDFs. Data factorization is this case
is extremely time consuming and rendering is not real-time.

The work on surface light fields includes view-dependent tex-
ture mapping [10; 11; 30]. Additionally, Wood et al. [39] use a
generalization of VQ and PCA (principal component analysis) [1]
to compress surface light fields and propose a new rendering algo-
rithm that displays compressed light fields at interactive frame rates.
Their 2-pass rendering algorithm interpolates the surface normals
using Gouraud shading producing incorrect results for large trian-
gles. To alleviate the problem they introduce a view-dependent ge-
ometry refinement at the cost of increasing the complexity of the
renderer.

Nishino et al. [28] propose the eigen-texture method that also
performs factorization on image data. Their basic theoretical ap-
proach is similar to ours however it applies only to a 3D subset of
the 4D light field and cannot be directly extended to the full 4D data.
Additionally, our approach uses a vertex-based partitioning which
ensures a continuous reconstruction, we explore a positive factor-
ization technique, and we develop a fully hardware-accelerated ren-
dering of surface light fields directly from our representation.

� ����
���
�� ������� ��	���
���
��

We start the description of the approximation method with a
novel partitioning scheme that ensures continuous approximations
throughout the surface of the model.
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Figure 2: The finite support of the hat functions Λv j around vertex
v j , j � 1�2�3. Λv j

�i
denotes the portion of Λv j that corresponds to

triangle �i. Functions Λv1 , Λv2 and Λv3 add up to one inside ∆i.
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We assume that the geometry of the models is represented as a tri-
angular mesh. An obvious partitioning of the light field function is
to split it between individual triangles. Unfortunately, an approxi-
mation of surface light field partitioned this way results in visible
discontinuities at the edges of the triangles. We demonstrate this ef-
fect in the video accompanying the paper. To eliminate the discon-
tinuities across triangle boundaries we propose to partition surface
light field data around every vertex. We refer to the surface light
field unit corresponding to each vertex as the vertex light field and
for vertex v j denote it as f v j �r�s�θ �φ�. Partitioning is computed by
weighting the surface light field function

f v j �r�s�θ �φ� � Λv j �r�s� f �r�s�θ �φ� (2)

where Λv j is the barycentric weight of each point in the ring of
triangles relative to vertex v j . Because of their shape, the weighting
functions are often referred to as the hat functions. The top row
of Figure 2 shows hat functions Λv1 , Λv2 , Λv3 for three vertices
v1, v2, v3 of triangle �i. As shown at the bottom of Figure 2,
these 3 hat functions add up to unity inside triangle �i. Therefore,
Equation (2) defines a valid partitioning of the surface light field
because the sum of all vertex light fields equals to the original light
field data.

In the final step of vertex-centered partitioning we reparameter-
ize each vertex light field to the local coordinate system of the ver-
tex. To this end, we define the viewing direction angles θ and φ as
the azimuth and elevation angles of the viewing direction vector in
the local reference frame of the vertex. We define the vertex ref-
erence frame in such a way that its z-axis is parallel to the surface
normal at the vertex. We use the same letters to denote the local
parameters of the vertex light field in order to simplify the notation.

��� #����$ ���� ����� ����	$�%���	�

Vertex-centered partitioning of light field data allows us to approx-
imate each vertex light field independently while maintaining con-
tinuity across the whole model. Analogous to Equation (1), we
approximate each vertex light field as

f v j �r�s�θ �φ��
K

∑
k�1

g
vj

k �r�s�h
vj

k �θ �φ�� (3)

We present two methods of approximating vertex light fields: PCA
(principal component analysis) [1] and NMF (non-negative matrix
factorization) [20]. Both of these methods approximate the light
field data as a linear combination of a small number of basis im-
ages but each one produces an approximation with a different set of

features. For example, each PCA-based basis image gives a global
approximation of the data. This means that we can use a subset
of them to produce a consistent approximation, since adding suc-
cessive basis images simply improves the accuracy preceding basis
images. NMF, on the other hand, produces basis images that form a
parts-based representation and therefore all of them need to be used
to produce a consistent approximation of the input data. PCA-based
approximation is therefore more progressive than NMF-based ap-
proximation. However, PCA allows the approximation factors to be
of arbitrary sign. This makes rendering more difficult and requires
more specialized graphics hardware. See Section 3.1 for details.
NMF does not allow negative values in the factors resulting in an
approximation that is much easier and faster to render on generic
graphics hardware.

We will use the matrix factorization framework to describe how
PCA and NMF construct the light field data approximations. We
first discretize the vertex light field function f v j �r�s�θ �φ� into a 4-
dimensional grid f v j �rp�sp�θq�φq�, where index p � 1� � � � �M refers
to the discrete values �rp�sp� describing the surface location within
the triangle ring of vertex vj , and index q � 1� � � � �N refers to the
discrete values �θq�φq� of the two viewing angles. We then rear-
range the discretized vertex light field into the matrix

Fv j �

�
��

f v j �r1�s1�θ1�φ1� � � � f v j �r1�s1�θN �φN �
...

. . .
...

f v j �rM �sM �θ1�φ1� � � � f v j �rM�sM �θN �φN �

�
�� � (4)

where M is the total number of surface samples inside the triangle
ring and N is the total number of views for each surface sample.
We refer to matrix Fv j as the vertex light field matrix. Each column
of this matrix represents the appearance of the vertex ring under a
different viewing direction. A detailed discussion of resampling the
irregular input light field data can be found in Section 5.

Both PCA and NMF construct approximate factorizations of the
form

�Fv j �
K

∑
k�1

ukvT
k (5)

where uk is a vectorized representation of discrete surface map
g

vj

k �rp�sp� and vk is a vectorized representation of discrete view
map h

vj

k �θq�φq�. The differences between the two methods arise
from the constraints imposed on the matrix factors uk and vk . PCA
constrains uk’s to be orthonormal and vk’s to be orthogonal to each
other. NMF, on the other hand, does not allow negative entries in the
matrix factors uk and vk. Singular value decomposition can be used
to compute PCA factorization. Since only the first few summation
terms of the factorization are needed, one can use an efficient algo-
rithm that computes partial factorization. See Appendix for details
on how to compute the factorizations.

Partitioning of light field data into vertex light fields ensures that
in the resulting approximation each triangle shares its view maps
with the neighboring triangles. Therefore, even though we decom-
pose each vertex light field independently, we obtain an approxi-
mation that is continuous across triangles regardless of the number
of approximation terms K. Let gvj �rp�sp� be the surface map and
hvj �θq�φq� be the view map corresponding to one approximation
term of vertex light field f v j �rp�sp�θq�φq�. Let �f�i �rp�sp�θq�φq�
denote the corresponding approximation term of the light field data
for triangle �i. The following equality holds

�f�i �rp�sp�θq�φq� �
3

∑
j�1

g
vj

�i
�rp�sp�h

vj �θq�φq� (6)

where index j runs over the three vertices of triangle�i and g
vj

�i
�r�s�

denotes the portion the surface map corresponding to the triangle

449



x

y
z

v2
v1

v3

d1 d2

d3

1

1

1

v1

v1

v1

view map
(x  ,y  )3 3

v1 v1

(x  ,y  )2 2
v1 v1(x  ,y  )1 1

v1 v1

surface map 

(s  ,t  )1 1
v1 v1

(s  ,t  )2 2
v1 v1

(s  ,t  )3 3
v1 v1

v1

x y

z

v2

v3

d1 d2

d3
3

3

3

v3
v3

v3
view mapsurface map

(s  ,t  )1 1
v3 v3

(s  ,t  )2 2
v3 v3

(s  ,t  )3 3
v3 v3

(x  ,y  )3 3
v3 v3

(x  ,y  )2 2
v3 v3

(x  ,y  )1 1
v3 v3

x

y

zv2
1

v3

d1 d2

d3

2

2

2

v2v2

v2

v

view mapsurface map

(s  ,t  )1 1
v2 v2

(s  ,t  )2 2
v2 v2

(s  ,t  )3 3
v2 v2

(x  ,y  )3 3
v2 v2

(x  ,y  )2 2
v2 v2

(x  ,y  )1 1
v2 v2

v2h   [θ , φ ]qq

v3
i∆

g   [r , s ]pp

v2
i∆

g   [r , s ]pp

v1
i∆

g   [r , s ]pp
v1h   [θ , φ ]qq

v3h   [θ , φ ]qq

Figure 3: Light field maps for one approximation term of one trian-
gle. Vertex reference frames are shown in the left column.

�i. Note that this equality holds for all approximation terms. Next,
we show how this property can be used to develop a very simple
and efficient rendering algorithm.

� ������
�� �����
���

Our rendering algorithm takes advantage of the property of vertex-
centered partitioning, described by Equation (6), which says that
the light field for each triangle can be expressed independently as a
sum of its 3 vertex light fields. This allows us to write a very effi-
cient rendering routine that repeats the same sequence of operations
for each mesh triangle. Additionally, since each light field approxi-
mation term is also evaluated in exactly the same way, we only need
to explain how to evaluate one approximation term of one triangle.

Figure 3 shows six light field maps used in Equation (6) to com-
pute one approximation term of light field for triangle �i. The
middle column shows surface maps g

vj

�i
�rp�sp�. The pixels covered

by the shaded triangle correspond to the points inside triangle �i
where we sampled the light field function. We will describe the
texture coordinates of these points as �s�t�. Note that due to parti-
tioning the pixels of the surface maps are weighted, as indicated in
the figure by gradient shading, but this does not alter the rendering
algorithm in any way.

The right column shows view maps hvj �θq�φq�. In each image,
the pixels inside the circle correspond to the orthographic projec-
tion of the hemisphere of viewing directions, expressed in the local
coordinate system xyz of vertex vj, onto the plane xy shifted and
scaled to the range �0�1�. We will describe the texture coordinates
of these points as �x�y�. This projection allows a simple texture
coordinate computation

x � �d �x�1��2� y � �d �y�1��2 (7)

where d represents the normalized local viewing direction and vec-
tors x and y correspond to the axes of the local reference frame.
Other transformations from 3D directions to 2D maps are possible
[15] but we found the one described here efficient and accurate.

Rendering of light field approximations is done using texture
mapping. Based on where the camera is located, the rendering al-
gorithm needs to access a different 2D subset of the 4D light field
function. This is done by recomputing the view map coordinates
�x

v j

i �y
v j

i � every time the camera moves. To this end, we apply Equa-
tions (7) to vectors dv j

i , which represent the viewing directions to

vertex vi expressed in the reference frame of vertex vj. This results
in 3 texture fragments shown in the right column of Figure 3. Note
that the texture coordinates are different for each fragment because
we are using a different reference frame to compute them. Since
the surface map texture coordinates �s

v j

i �t
v j

i � do not depend on the
viewing angle, they do not need to be recomputed when the camera
moves.

Evaluating one complete approximation term is equivalent to
multiplying pixel-by-pixel the image projections of the surface map
and view map texture fragment pairs for the 3 vertex light fields of
the triangle, each shown in a separate row of Figure 3, and adding
the results together. The multiple term approximation of each tri-
angle light field is computed by simply adding the results of each
approximation term.

��� &������� ����������� '%���%������	�

In this section we discuss efficient implementations of light field
mapping using specific hardware features such as multitexturing
and extended color range. Recall that one of the fundamental oper-
ations of the proposed rendering algorithm was the pixel-by-pixel
multiplication, or modulation, of the surface map fragment by the
corresponding view map fragment. Multitexturing hardware sup-
port enables us to compute the modulation of multiple texture frag-
ments very efficiently in one rendering pass. Consequently, for
the NMF-based approximation of light field data, which produces
strictly positive light field maps, we need at most 3 rendering passes
to render each light field approximation term using multitexturing
graphics hardware that supports 2 texture sources. Without multi-
texturing hardware support we can implement the rendering algo-
rithms described above using an accumulation buffer, though sig-
nificantly less efficiently.

For the PCA-based approximation, which in general will pro-
duce light field maps that contain negative values, rendering can
benefit from graphics hardware that permits a change to the lim-
its of the color range from the traditional �0�1� range to �min�max�,
e.g., ��1�1�. NVIDIA cards support extended color range through
the register combiners extension [35] but they still clamp the nega-
tive output to zero. This means that we can render PCA-based ap-
proximations using register combiners at the expense of doubling
the rendering passes as follows. Let M be the result of modulation
of two texture fragments A and B using register combiners. Let
M� be the result of clamped modulation of fragments A and B and
let M� be the result of modulating �A and B the same way. We
can compute M by subtracting the outputs of the two modulations
M � M��M�. Even when the graphics hardware does not support
any extended pixel range we can still render PCA-based approxima-
tions, though the number of rendering passes required to evaluate
one approximation term increases to 4.

PCA-based matrix factorization requires that we subtract the
mean view from the light field matrix before performing the de-
composition. It changes the rendering routine only slightly—we
first texture map the triangle using its mean view and then add the
approximation terms of the modified light field matrix exactly as
it was done before. One of the advantages of extracting the mean
view and rendering it separately is that in many cases this view rep-
resents an approximation to the diffuse component of the surface
material and, as such, is interesting to visualize independently from
the view-dependent component of the light field data.

� �������
�� �� �
��� �
��� ���

Approximation through matrix factorization described in Sec-
tion 2.2 can be thought of as a compression method that removes lo-
cal redundancy present in the light field data. The compression ratio
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Figure 4: Surface maps (left) and view maps (right) computed using
PCA-based approximation for the bust model. The lower portion of
the left image represents the extracted mean textures. All other light
field maps are stored in ��1�1� range, where�1 is mapped to black.

of this method is closely related to the size of the surface primitives
used for partitioning. On the one hand, a dense mesh with many
vertices will have unnecessarily large number of view maps. On
the other hand, a coarse mesh requires more approximation terms
for the same approximation quality. See Section 6.1 for the analysis
of the relationship of the compression ratio and the approximation
quality to the triangle size. Currently, we choose the size of trian-
gles empirically so that we obtain about two orders of magnitude
compression ratio through approximation while maintaining high
quality without using many approximation terms. Section 6.2 gives
a detailed analysis of compression ratios obtained through the ap-
proximation.

Figure 4 shows, for the bust model, surface maps (left) and view
maps (right) computed using PCA-based approximation. It is easy
to see that the light field maps are still redundant. First, the individ-
ual maps are similar to each other, suggesting global redundancy
of the data. Second, some of the light field maps have very little
information content and can be compressed further using a variety
of existing image compression techniques.

Figure 5 gives an overview of the different levels of compression
we apply to the light field data. For optimal run-time performance,
compressed light field maps need to fit entirely in the texture mem-
ory cache and be decompressed on-the-fly during rendering. This
process should only introduce minimal run-time memory overhead.
In the following paragraphs we discuss several techniques that sat-
isfy these criteria. Other image compression techniques can be used
to further reduce the offline storage size, as shown in Figure 5, but
are not discussed in the paper.

Data redundancy across individual light field maps can be re-
duced effectively using VQ [13]. Our implementation represents
each triangle surface map g

vj

�i
�rp�sp� and each view map hvj �θq�φq�

as a vector. The algorithm groups these vectors based on their size
and generates a separate codebook for every group. We initialize
the codebooks using either pairwise nearest neighbor or split algo-
rithm. The codebooks are improved by the generalized Lloyd algo-
rithm utilizing square Euclidean distance as the cost function. We
then store the resulting codebooks as images. The rendering algo-
rithm from VQ-compressed images does not change in any way–it
simply indexes a different set of images.

We use either a user-specified compression ratio or the average
distortion to drive the VQ compression. With the distortion-driven
algorithm, the light field maps corresponding to the higher approx-
imation terms exhibit more redundancy and thus are often com-
pressed into a smaller codebook. In practice, light field maps can
be compressed using VQ by an order of magnitude without signifi-
cant loss of quality.

Data redundancy within individual light field maps can be re-
duced efficiently using block-based algorithms. One such method,
called S3TCTM, is often supported on commodity graphics cards

Decomposition
(100:1)

Vector
Quantization
(10:1)

Hardware Texture
Compression
(6:1)

Run-Time Memory
Reduction Techniques

Disk Storage
Reduction Techniques

Raw Surface 
Light Field Data

Light Field Maps

Online Texture Memory Disk Storage

Figure 5: Compression Overview. The number under each tech-
nique describes its approximate compression ratio.

today. It offers compression ratios between 6:1 and 8:1 and can be
cascaded with VQ for further size reduction. Limited by hardware
implementation cost, these algorithms are not very sophisticated in
nature. For example, the S3TC algorithm divides the textures into
4-by-4 texel blocks and performs color interpolation within each
block. Since the algorithm uses blocks that are smaller than most
light field maps, when compared to VQ, it generates noisier images
but it preserves the specularities better.

For PCA-based approximation, we observe that the light field
maps associated with higher approximation terms contain lower
spatial frequency. To test if we can reduce the resolution of these
light field maps without significant impact on the rendering qual-
ity, we implemented a simple method that subsamples the image
resolution uniformly within each term. The results, although not
reported in the paper, proved effective. A more sophisticated ap-
proach would apply selective resolution reduction to each light field
map, or simply reduce light field matrix resolution during resam-
pling.

� ����������
��  ���
��

This section describes the following three implementation related
issues: the acquisition of the geometry and the radiance data of
physical objects, resampling of the radiance data, and tiling of the
light field maps.

(�� )��� ��*������	�

Figure 6 gives an illustration of the overall data acquisition process.
A total of NI (200 � NI � 400) images are captured with a hand-
held digital camera (Fig. 6a). Figure 6b shows one sample image.
Observe that the object is placed on a platform designed for the
purpose of automatic registration. The color circles are first auto-
matically detected on the images using a simple color segmentation
scheme. This provides an initial guess for the position of the grid
corners that are then accurately localized using a corner finder. The
precise corner locations are then used to compute the 3D position of
the camera relative to the object. This may be done, given that the
camera has been pre-calibrated. The outcome of this process is a
set of NI images captured from known vantage points in 3D space.

The object geometry is computed using a structured lighting sys-
tem consisting of a projector and a camera. The two devices are
visible in Figure 6a. Figure 6c shows an example camera image
acquired during scanning. The projector is used to project a trans-
lating stripped pattern onto the object. A similar temporal analysis
employed by Curless et al. [8] and Bouguet et al. [3] is used for
accurate range sensing. In order to facilitate scanning, the object is
painted with white removable paint, a technique especially useful
when dealing with dark, highly specular or semi-transparent ob-
jects. We take between 10 and 20 scans to completely cover the
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(a) (b)

(c) (d) (e)

Figure 6: Data acquisition. (a) The user is capturing approximately
300 images of the object under a fixed lighting condition using a
hand-held digital camera. (b) One sample image. The color circles
guide the automatic detection of the grid corners that are used for
computing the 3D location of the camera. (c) The painted object be-
ing scanned using the structured lighting system. (d) The complete
3D triangular mesh consisting of 7228 triangles constructed from
20 scans. (e) The projection of the triangular mesh onto image (b).

surface geometry of the object. Between two consecutive scans,
the object is rotated in front of the camera and projector by about
20 degrees. For that purpose, the calibration platform has been
designed to rotate about its central axis. The individual scans are
automatically registered together in the object reference frame us-
ing the same grid corners previously used for image registration.
The resulting cloud of points (approx. 500,000 points) is then fed
into mesh editing software to build the final triangular surface mesh
shown in Figure 6d. Since we use the same calibration platform
for both image and geometry acquisition, the resulting triangular
mesh is naturally registered to the camera images. Figure 6e shows
the projection of the mesh onto the camera image displayed in Fig-
ure 6b illustrating the precise alignment of the geometry and the
images. The image reprojection error is less than one pixel.

(�� )��� ����%�����

Before we start resampling, we need to determine the visible cam-
eras for each mesh triangle. A triangle is considered visible only
if it is completely unoccluded. Repeating this process for all NI
images results in a list of visible views for each triangle. The visi-
ble triangle views correspond to a set of texture patches of irregular
size captured from various viewing directions. We now explain the
two-step process of resampling the irregularly sized views into a
4-dimensional grid.

Recall that the approximation algorithms described in Sec-
tion 2.2 assume light field data in the form of matrices. This re-
quires that we normalize each texture patch to have the same shape
and size as the others. The size of the normalized patch is chosen to

Figure 7: Resampling of views. Projection of original views (left),
Delaunay triangulation of projected views (center), uniform grid of
views computed by blending the original set of views (right).

be equal to the size of the largest view. Resampling is done using
bilinear interpolation of the pixels in the original views.

At this stage, we have a uniform number of samples for each
triangle view but the sampling of views is still irregular. Having a
regular grid of viewing directions in the light field matrix is very
important for two reasons. As was shown in [6], factorization of
the fully resampled matrix results in a more precise approximation
and encodes the view-dependent information allowing us to syn-
thesize a correct image for any camera location using the rendering
algorithm that was described in Section 3. We will use Figure 7 to
explain the view resampling step. Let vectors d

v j

�i
be the viewing

directions for the visible views of a given triangle expressed in the
reference frame of vertex vj. We start by projecting these directions
onto the xy plane of the reference frame of vertex vj using Equa-
tions (7). The result of this operation is a set of texture coordinates
(Figure 7, left). Next we perform the Delaunay triangulation of
these coordinates (Figure 7, middle) and compute the regular grid
of views by blending the original triangle views using the weighting
factors obtained from the triangulation (Figure 7, right).

We assume that the viewing direction is constant across a trian-
gle, since the distance of the camera from the object during light
field capture is generally quite large compared to the size of the tri-
angles. The typical resolution of the view grid is 32� 32 � 1024,
but it can vary from triangle to triangle and between the approxi-
mation terms as explained in Section 4.

(�� +����� 	
 ���� ����� ����

To avoid excessive texture swapping and improve rendering effi-
ciency, we tile individual light field maps together to create col-
lection of light field maps. To simplify the problem, we allow a
predefined set of sizes for the light field maps during the resam-
pling process, and then tile same-size light field maps together, as
shown in Figure 4. Since one triangle requires three surface maps
per approximation term, we tile all these maps in the same collec-
tion. We split the geometry of the model into p segments so that the
tiled view maps for each segment do not exceed maximum texture
size allowed. We then produce one view map collection per seg-
ment: �V1�V2 � � � �Vp�. Let �Si

1�S
i
2� � � � �S

i
qi
� be the list of surface map

collections for vertex map collection Vi. For each approximation
term, the rendering algorithm is as follows

for i � 1� � � � � p do
load view map collection Vi into texture unit 1
for j � 1� � � � �qi do

load surface map collection Si
j into texture unit 2

render all triangles with surface maps in collection Si
j

end for
end for

! �������

We have acquired the surface light fields and computed the light
field map representations for four physical objects with diverse and
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Number Raw ResampledModels Triangles
of Images Image Size Data Size

Bust 6531 339 289 MB 5.1 GB
Dancer 6093 370 213 MB 2.9 GB
Star 4960 282 268 MB 5.2 GB
Turtle 3830 277 233 MB 3.8 GB

Table 1: The sizes of the experimental data sets. The second to
last column shows the total size of renormalized triangles. The last
column shows the size of the resampled surface light field data used
for the decomposition.

complex reflection properties, including the metallically-painted
clay bust in Figure 13, dancer in Figure 12, semi-transparent and
anisotropically reflective glass star in Figure 14, and the furry toy
turtle in Figure 11. We also constructed a synthetic museum room
as shown in Figure 1. The scene has approximately 60K polygons.
Using 1-term approximation, we can render it at 18 frames per sec-
ond using the GeForceTM 3 graphics card on a 2GHz PentiumTM 4
PC.

,�� ��*������	� ��� ����%�����

Table 1 provides information about the data sizes for the scanned
models used in our experiments. We use 24-bit RGB images in all
the experiments. The raw image size in this table represents the
total amount of radiance data after the visibility computation and
triangle normalization process as described in Section 5. When re-
sampling the viewing directions we assume a resolution of 32�32.
Note that, traditionally, research on light field compression reports
results based on the size of the resampled light field data [22; 23].
The compression ratios reported in the next section are computed
based on the size of resampled data.

Figure 8 illustrates the relationship of the compression ratio and
the approximation quality to the triangle size for the bust object. As
seen from the figure, smaller triangles provide better approximation
quality but lower compression ratio. It is also interesting that for the
same target error larger triangles always give a better compression
ratio. Note also that smaller triangles are slower to render for each
approximation term. Depending on the target hardware platform,
user may choose to reduce the number of triangles while increas-
ing the number of required passes, or vice versa, to achieve desired
frame rate and compression ratio. For the following experiments,
based on the goal of 100:1 compression obtained for the 3 term ap-
proximation with no compression of light field maps, we choose
mesh resolution that gives us approximately 314 samples per trian-
gle for all our models.

,�� ����	$�%���	� ��� �	%������	�

We measure the quality of the surface light field approximation us-
ing RMS error computed between the resampled light field ma-
trix and the matrix reconstructed from the approximation. Fig-
ure 9 shows PSNR (Peak Signal-to-Noise Ratio) for PCA-based
and NMF-based approximations. The results show that both tech-
niques produce high quality approximations using few approxima-
tion terms. Note that the scale in Figure 9 is logarithmic and that all
approximations that use more than 3 terms have the RMS error of
less than 2.0. This result provides a quantitative proof of the effec-
tiveness of light field approximation through matrix factorization.

Between the two algorithms, PCA produces better quality than
NMF, however, the difference is visually almost indistinguishable.
Note that the frame buffer quantization that occurs during each tex-
ture blending operation is not considered in Figure 9. This quanti-
zation error implies that an approximation beyond 48dB would not
improve the quality of hardware-accelerated renderer.
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Figure 8: Relationship of the compression ratio and the approxi-
mation quality to the triangle size for the bust object. The points
on each curve correspond to the different number of approximation
terms for a given mesh resolution. Coarser mesh has more samples
per triangle.

Table 2 lists the size and compression ratio of the light field data
obtained through the light field data approximation and the addi-
tional compression of the light field maps. The size of geometric
data falls below 10KB for all objects listed in the table when com-
pressed using topological surgery [36] and therefore is negligible
compared to the size of light field maps. By combining VQ with
S3TC hardware texture compression, we achieve a run-time com-
pression ratio of over 5000:1 for a 3-term approximation. For inter-
active purposes, 1-term approximation is often sufficient and thus
the resulting compression ratio approaches 4 orders of magnitude.

,�� ���������

Figure 10 compares the rendering performance of PCA-based and
NMF-based approximations. NMF-based rendering is 50% faster
than PCA-based for the same number of approximation terms. The
performance disparity will be larger if the target platform only
supports positive texture values. The rendering performance of
our algorithm is not very sensitive to the size of light field map
data—doubling the image size reduces the frame rate by less than
20%. Rendering from compressed and uncompressed light fields is
equally fast if image sets in both cases fit into the texture memory.

Figures 11-14 compare the rendering quality of our routines
against the input images and report the corresponding errors. The
errors reported in the figures are computed based on the difference
between the input image and the rendered image using both APE
(average pixel error) and PSNR for the foreground pixels only. Cur-
rently we discard partially visible triangles in the resampling pro-
cess, which also contributes to the error. In the future, we plan to
address the problem of partially occluded triangles by looking at
factor analysis algorithms that use data statistics to fill in missing
information [32].

" ���	���
�� ��� ������ #��$

We have developed a new representation of surface light fields and
demonstrated its effectiveness on both synthetic and real data. Us-
ing our approach, surface light fields can be compressed several
thousand times and efficiently rendered at interactive speed on mod-
ern graphics hardware directly from their compressed representa-
tion. Simplicity and compactness of the resulting representation
leads to a straightforward and fully hardware-accelerated render-
ing algorithm. Additionally, we present a new type of light field
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Figure 9: Approximation quality for different models and differ-
ent number of decomposition terms. PSNR and RMS are based on
the weighted average of the approximation errors for all light field
matrices.
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Figure 10: Rendering performance using NVIDIA GeForce 3
graphics card on a 2GHz Pentium 4 PC displayed at 1024� 768
window with objects occupying approximately 1/3 of the window.

data factorization that produces positive only factors. This method
allows faster rendering using commodity graphics hardware. Fur-
thermore, the paper contains a detailed explanation of the data ac-
quisition and preprocessing steps, providing a description of the
complete modeling and rendering pipeline. Finally, our PCA-based
approximation technique is particularly useful for network trans-
port and interactive visualization of 3D photography data because
it naturally implies progressive transmission of radiance data.

One of the limitations of a surface light field is that it models
only the outgoing radiance of a scene. Consequently it is not possi-
ble to use surface light fields to render dynamic scenes where light-
ing changes and objects move. In the future, we are planning to
work on extending the approach presented in this paper to relighting
and animation of image-based models. If successful, these results
would prove that image-based modeling and rendering is a practi-
cal and an appealing paradigm for enhancing the photorealism of
interactive 3D graphics.
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Figure 11: The figure shows a comparison for the turtle model be-
tween the input images shown at the top row and the images synthe-
sized from the 1-term PCA approximation compressed using both
VQ and S3TC shown at the bottom row. APE = 9.5, PSNR = 25.5
dB, the compression ration is 8202:1, and the size of compressed
light field maps is 468 KB.
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Let F be a matrix of size M � N. The goal of matrix factor-
ization leading to Equation (5) is to compute an M � K matrix
U � �u1 � � �uK � and an N�K matrix V � �v1 � � �vK � such that the
matrix �F � UVT (8)

best approximates F in the least squares sense. The PCA and NMF
factorizations are two algorithms achieving this goal while enforc-
ing different constraints on the vectors uk and vk. PCA enforces
the vectors uk and vk to be orthogonal and keeps the factorization
progressive—that is, once the order K factorization is computed,
the K-1 first pairs of vectors provide the best approximation at the
order K-1. NMF, on the other hand, enforces vectors uk and vk

to have all positive entries. Unlike PCA, NMF produces a non-
progressive factorization. In other words, if a different approxima-
tion order K is chosen, the overall matrices U and V have to be
recomputed. The next two sections describe the implementation.

"�� ���	���%

The PCA factorization is based on computing the partial singular
value decomposition of matrix F. Since only the first K �N eigen-
vectors v1� � � � �vK of matrix A � FT F need to be computed, the
power iteration algorithm is well suited to achieve this goal. The
pseudo-code for this algorithm looks as follows:

for p � 1� � � � �K do
Fp � F�∑p�1

k�1 ukvT
k

Ap � FT
p Fp

Initialize vp � random N�1 non-zero vector
repeat

vp � Apvp
vp � vp��vp�

until vp converges
λp �

�
Apvp

up � Fpvp�λp
maxu � max of the absolute values of all the entries of up
maxv � max of the absolute values of all the entries of vp

α �
�

maxuλp�maxv
up � λpup�α
vp � αvp
Quantize the entries of up and vp for texture storage

end for
The coefficient α introduced in the code helps splitting the multi-
plicative factor λp among the vectors up and vp so as to minimize
the maximum quantization error.

-�� ���	���%

The NMF factorization achieves the same matrix decomposition
while enforcing all entries of the two matrices U and V to be posi-
tive. We propose to apply the algorithm presented by Lee et al. [20]
to compute U and V iteratively:

Initialize U� random M�K matrix of all strictly positive entries
Initialize V� random N�K matrix of all strictly positive entries
repeat

Un1 � �un1 �i� j��� FV
Un2 � �un2 �i� j��� UVT V
Un � �un�i� j��� �un1�i� j��un2 �i� j��
Vn1 � �vn1�i� j��� FT U
Vn2 � �vn2�i� j��� VUT U
Vn � �vn�i� j��� �vn1 �i� j��vn2�i� j��
U � �u�i� j��� �u�i� j�	un�i� j��
V � �v�i� j��� �v�i� j�	 vn�i� j��
U � �u�i� j���

	
u�i� j��∑M

r�1 u�r� j�



until U and V converge
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Light Field Maps Compression of Light Field MapsModels
(3-term) VQ S3TC VQ+S3TC

Bust 47.7 MB (106:1) 5.7 MB (885:1) 8.0 MB (636:1) 951 KB (5475:1)
Dancer 35.7 MB (82:1) 5.4 MB (542:1) 5.9 MB (490:0) 904 KB (3303:1)
Star 42.3 MB (122:1) 7.2 MB (716:1) 7.0 MB (737:1) 1.2 MB (4301:1)
Turtle 31.7 MB (121:1) 4.5 MB (847:1) 5.3 MB (726:1) 755 KB (5084:1)

Table 2: The size and compression ratio of the radiance data obtained through the light field map approximation and additional compression
of the surface light field maps.

Photograph 4-term PCA 4-term NMF 2-term PCA 2-term NMF
APE=5.42, PSNR=27.63 dB APE=5.82, PSNR=27.35 dB APE=6.43, PSNR=26.77 dB APE=6.76, PSNR=26.54dB

46.4 MB(63:1) 46.4 MB(63:1) 24.9 MB(117:1) 24.9 MB(117:1)

Figure 12: Comparison between PCA and NMF approximation methods. Using the same number of terms, PCA light field maps produce
less error, but are slower to render than NMF.

Photograph 3-term PCA 3-term PCA+VQ 3-term PCA+VQ+S3TC Triangle Mesh
APE=4.57, PSNR=31.04 dB APE=6.98, PSNR=27.90 dB APE=7.49, PSNR=27.51 dB

47.7 MB (106:1) 5.7MB (885:1) 951KB (5475:1)

Figure 13: Comparison between different light field map compression algorithms using the bust model. VQ tends to diminish the highlight
while S3TC preserves highlights better at the expense of color quality.

Photograph 4-term PCA 3-term PCA 2-term PCA 1-term PCA
APE=4.79, PSNR=30.48 dB APE=5.28, PSNR=29.85 dB APE=5.99, PSNR=28.95 dB APE=7.34, PSNR=27.51 dB

54.4MB (95:1) 42.3MB (122:1) 30.2MB (171:1) 18.1MB (285:1)

Figure 14: The figure demonstrates the progressive nature of PCA approximation. The same star model is rendered using different number
of approximation terms.
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